AD-A236 771

[ 3

MM |

GL-TR-90-0361

Improved ANS Lightning Predictors Using
Additional Surface Wind and Electric Field Data

Donald S. Frankel
James Stark Draper

KTAADN, INC.
1340 Centre St.
Suite 202

Newton, MA 02159

31 December 1990

Final Report
Period Covered: 4 May 1990-31 December 1990

ELECTE
Approved for public release; distribution unlimited JUN1 A w

GEOPHYSICS LABORATORY

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000 01649

91 & 7 158 ||II||| lIIlIlllllIlllnlllllll'\llllllllll |




"This technical report has been reviewed and is approved for publication"

Y. N
“ ROBERT O, BERTHEL DONALD D. GRANTHAM, Branch Chief
Contract Manager Atmospheric Structure Branch

Atmospheric Sciences Division

Atmospheric Sciences Division

Qualified requestors may obtain additional copies from the Defense Technical

Information Center. All others should apply to the National Techmnical Information
Service (NTIS).

1f your address has changed, or if you wish to be removed from the
mailing list, or if the addressee is no longer employed by your
organization, please notify GL/IMA, Hanscom AFB, MA 01731. This
will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document requires that it be returned.




REPORT DOCUMENTATION PAGE rorm Appoved

UM Ivo J/7U-C el

PLOi L 1eSTING G Burden B iRy,

Heete a0 GEAT T LOM 18 oL Mated Ty syeta, TR0 Ll Zesput o8 aRIudle 5 Te LMo TG ey Y g, 1 o LR
Falfrtsicd s DRt detn iRe 1l feeded, 3 (SR G 1w Gt e QU GE G 3 UL G et WL (s de 3 2o T s Gl . v ot
el ot SLINIOIMADC B M Ui § 3w @0y TOF 1eQUant § TR CutGen Ty G adNiglon (eadQquaf teiy Sefuces, cafvator e Ior el L Y gt Do o RV N
Vigeiy Huilan gy, Sote 108 coniet 3100 o0 J27083 902, id Ty Bhes UTTce OF Management and sud Jet M apefan s eduitn e’ o 1g/0s 3o wesn oy
1. AGENCY USE ONLY (Leave biunk) 2. REPORT DATE

3. KEPORT TYPE ANDO DATES CUVERED

31 December 1990 Final (4 May 1990-31 December 1990)
4. TITLE AND SUBTITLE 5. FUNDING RUSGE s
Improved ANS Lightning Predictors Using Additional Surface| PE 62101F

Wind & Electric Field Data PR ILIR TA 9F WO AA

Donald S. Frankel
James Stark Draper

TS Contract F19628-89-C-0012

7. PERFOKMING OKGANIZATION NAME(S) AND ADORLSS(ES) 8. PrRYOKNIG GrnGmas 2 a bl
KTAADN, Inc KEPORT NURGLLK

1340 Centre Street
Suite 202

Newton, MA 02159

9. SPONSORING / MUONITORING AGENCY NAMLE(S) AND ADDRESS(ES) 10, SPONSUEING G ORING
Gcophysic‘ hbor'tory AGENCY KerOrT NUunict )
Hanscom AFB, MA 01731-5000 GL-TR-90-0361

Contract Manager: Robert Berthel/LYC

11. SUPPLEMIENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIbU Livts COLL

Approved for public release; distribution unlimited

-

13. ABSTRACT (Maximum 200 word;) Because of the destruction by lightning of Atlas-Centaur 67

from the national ranges. These criteria are very conservative and restrict the
available launch windows, especially during summer months at Kennedy Space Center
(KSC) and Cape Canaveral Air Force Station (CCAFS) in Florida. In an effort to
expand the launch windows while maintaining safety, we show that neural networks can
be trained to generate spatio-temporal maps of predicted probabilities of lightning
over the CCAFS/KSC complex.

Input data used for training and testing the neural networks include the five
minute averages from all 53 wind senmsors, the Total Area Divergence product calcu-
lated by Watson, the occurrence of lightning strikes as recorded by magnetic direc-
tion finders, and most recently, the electric field mill data. Training the neural
network lightning predictor with wind data spanning two days of data and the
divergence product increased the PoD to 0.65. The predictor's best performance is

at 30~60 minutes in the future. We expect the electric field data to affect near
term prediction more than later times.

and its communication satellite payload on 27 March 1987, new launch commit criteria
with respect to lightning were imposed by NASA and the Air Force for missile launches

i
!

|
i

1a. SUBJECT TERMS 15. NUWIBER OF PAGES
Severe gtorms Neural networks 42
Lightning prediction 16. PIOCL COLY ;
17, SECURITY CLASSIFICATION 118 SECURITY CLASSIFICATION J19. SECUNITY CLASSIFICATION )20 LiiitATion O aauli, <14
OF REPORT OF THIS PAGE Ot ABSTRACT i
Unclassified Unclassified Unclassified SAR H

NON 7540 ut JHU SSu) RPN - N




Executive Summary

The Air Force's Air Weather Service (AWS) provides weather
support, including the forecasting of lightning, to both NASA and the
Department of Defense at Cape Canaveral Air Force Station
(CCAFS) and at Kennedy Space Center (KSC). Because of the
destruction by lightning of Atlas-Centaur 67 and its communication
satellite payload on 27 March 1987 (Christian et al., 1988), new
launch commit criteria with respect to lightning were imposed by
NASA and the Air Force for missile launches from the national
ranges. These criteria are very conservative and restrict the
available launch windows, especially during summer months at KSC
and CCAFS in Florida. This report describes an effort to improve the
forecasting of lightning by applying neural networks to the prediction
of lightning. Specifically, it is intended to construct and train neural
net architectures to generate spatio-temporal maps of predicted
probabilities of lightning over the CCAFS/KSC complex. The goal of
this work is to improve the precision and accuracy of lightning
prediction so that the launch commit criteria may be relaxed while
maintaining acceptable safety margins.

A thunderstorm's progress over KSC affects local weather pa-
rameters: precipitation, cloud cover, winds and electric fields.
Watson et al. 1987 developed correlations between present surface
wind convergence events and lightning strikes over the next few
hours. Using artificial neural systems (ANS) to process surface
winds, Frankel et al. 1989b built the first automatically trainable
lightning predictor. Its performance was comparable to that re-
ported by Watson et al. 1987 using wind convergence.

Several approaches are considered in this report for improving
the ANS lightning predictor. All should offer significant improve-
ments in performance, but not all could be implemented in this con-
tract effort.

(1) Additional Lightning Days for more representative training

Additional days of wind and lightning data were used to
extend the single training day employed in Frankel et al.
1989b.
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(2) "Conditioning' Input Nodes for synoptic weather conditions

'‘Context' input nodes can be used for introducing the
synoptic weather regime discussed by Lopez et al. 1987 in
connection with lightning activity over central Florida.

(3) Additional Lightning Prior Times for temporal trends

Frankel et al. 1989b used wind data at a single time, tg, in
the ANS predictor to forecast strikes at to, t+12, t+1 and t,g,
where the subscript indicates the time of prediction in
hours. On the other hand, Lapedes & Farber 1987 used
several consecutive values of a time series as inputs to an
ANS for generalized, non-linear predictions and for
providing a 'mapping’ of the underlying systematic
behavior of a system. The use of a time series of inputs
(e.g. to, t.19, t.1, t.2, &c.) of wind data should be considered.

(4) Addition of E-Fields adds an independent predictive variable

Lightning strikes at distances of up to 50 km induce
changes in the local electric field, Anon 1989b. Electric
field data combined with wind data in the ANS lightning
predictor might improve prediction performance,
especially for nowcasting and predictions up to 1 hour.

(5) Addition of Met Data Products to reduce ANS complexity.

Raw wind data (two perpendicular wind speed
components) from irregularly spaced wind towers were
used by Frankel et al. 1989b. Holle et al. 1988 have shown
that wind divergence is of value for lightning prediction.
Inclusion of their product among the network inputs is
expected to improve the ANS predictor's perforimance.

This report describes three extensions to our previous
work: (1) use of additional lightning day data for network training,
(2) use of wind divergence values as an additional input for KSC, and
(3) use of time averaged electric field mill data. Improved ANS
predictor performance, measured by both higher probabilities of
detection (PoD) and low false alarm rates, was achieved.

Prediction results attained are, for most test days, superior to
the PoDs of the previous state-of-thc-art reported by both Watson et
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al. 1987 and Frankel et al. 1989b. This improvement is summarized

in the figure below.
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The importance of the synoptic weather regime was
investigated by Lopez et al. 1987 who showed correlations between
weather regimes and subsequent lightning strike patterns in central
Florida. This relation should be tested in future research. Once the
synoptic weather is quantified, ANS predictors can be modified to
accommodate this ‘contextual’ information.

The study shows the value of including additional days in the
training sets. There are two implications for ANS predictors in
operational use. First, further improvements will accrue from the
use of larger data sets extending to at least two or three seasons of
archived KSC data. Second, once in operation (on site) an ANS
lightning predictor's performance will continue to improve, by
incremental learning of current data, as a by-product of routine,
continuous data collection. Automation of wind, electric field and
lightning strike data collection will speed and reduce the costs of these
improvements. This will be a great help to AWS meteorologists who
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initially have limited acquaintance with local weather conditions due
to their rotating tours of duty, Pickle 1990.
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1. Technical Approach

A method is developed for the prediction of lightning strikes
which uses additional days of data and combines electrical and wind
inputs. This work continues that on the 'wind field to lightning strike’
artificial neural system (ANS) predictor of Frankel et al. 1989b.

The combination of knowledge of the physics of storms and
available measurements are the basis for a discussion of prediction
techniques in Section 2, "Lightning Prediction Parameters.” How
weather data can be combined in an improved ANS predictor is
described in Section 3, "Data Fusion and Time Series Prediction in
Weather Networks.” Results from this study are given in Section 4,
"Modified ANS Networks." Recommendations on ANS layouts,
training and testing procedures and the inclusion of new weather
parameters are made in Section 5, "Recommendations.”

1.1. Formulating a Prediction Method

Prediction is based on one or a combination of several
techniques. When the phenomenon is well modelled excellent
predictions can be made that degrade into the future as small initial
inaccuracies come to dominate the process. In the present case, given
that lightning is not well modeled, four predictive approaches can be
used singly or in combination:

1) Guesses of future lightning strikes (‘rolling dice');

2) Historical averages of prObabllltleS used for future lightning

strikes (the typical approach in the past);

3) Projections of storm motion (used in some current systems,

Anon 1989a and Anon 1990); and
4) Time series predictors using current meteorological data.

The technique used here is a time series predictor, 4, using ANS
techniques. This approach requires meteorologically relevant
measured parameters from which to form independent data sets for
training the ANS predictors and testing the resulting predictor. By
analogy to multiple regression techniques, inputs may be thought of
as predictor variables and outputs play the role of dependent
variables. The ANS predictor combines raw predictor variables or
products (e. g. Total Area Divergence) to make predictions. The ideal
ANS predictor will 'map’ the predictor variables into valid predictions.
In practice, measurement and environmental noise and limited
training sets will degrade the prediction. The challenge in this project
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is the attainment of improved prediction performance in the
presence of these deleterious effects.

Besides selecting the physical parameters having higa
predictive value, one must decide how to configure a neural network
to make the best use of these parameters. These issues are how to
include variables taken over differing spatial and temporal sampling
rates, how to include 'contextual’ variables which remain constant
during a day, and how to preprocess this mass of data. Overall, this
data integration process or 'fusion' is best done when the physical
situation is well understood. But ANS are most advantageous
precisely when the physics of prediction is not well understood. In
any case, inclusion of all relevant weather data is beyond the scope of
this study, but the one dimensional parameters most useful to human
forecasters can be included. This includes winds, electric fields, and
Total Area Divergence, a product derived from wind data.

12. Building on the ANS Predictor

There are clearly several ways in which the ANS work of
Frankel et al. 1989b could be extended and improved. These include:
(a) network training using more than one day's worth of data, (b)
inclusion of products, such as the divergence, (c¢) inclusion of electric
field data (d) 'conditioning' input nodes to account for Time of Day
and other contextual effects, and (e) the use of input data from times
earlier than tg to capture the time derivative.

(a) Training with more days of data exposes the neural network to
different weather conditions. This enhances a key property of data
used to train neural networks: the degree to which the data are
representative of the weather situations which will be encountered in
practice. A neural network trained on many days will be forced to
generalize. It will embody less of what is particular about the
weather on any given day and more about what is useful in general
for prediction.

(b) Products are the results of processing data with conventional
algorithms to arrive at a result which is more useful to forecasters
than the raw data. We would e¢xpect a neural network's
performance to improve if a useful product were included among its
inputs, since then the network would not have to build the product on
its own. The Total Area Divergence calculated by Watson et al. is
such a product; products of radar and satellite imagery are also used
by forecasters at Kennedy Space Center (KSC).
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(¢) Inclusion of Electric Field

The electric field measured at the ground is indicative of the
approach of charged clouds, as described in Section 2.2. Indications
begin generally less than an hour before the first lightning strike
reaches the ground. We therefore expect that the inclusion of electric
field data will improve the network's predictions at time 'now' and
'1/2 hour'.

(d) Conditioning Inputs

By conditioning inputs we mean inputs which are not
necessarily indicative of lightning by themselves, but which influence
the significance of the other data. Synoptic wind regime is one such
parameter, since it has no spatial or temporal information, but is
correlated with the probability of lightning. Stability indices, time of
day, and season of the year also could be considered, the latter coming
into play when nets are trained with data from multiple seasons.

(e) Use of Time Trends

Finally, the time trends in the data should be included in the
ANS analysis. In connection with these trends, there are several
means of preprocessing. For instance, the wind data at to and the
time derivatives of the earlier data might be used, or the prior data
themselves might be presented as inputs along with data from t.
Time variation might be especially valuable for prccessing electric
field data, since the passage of thunderstorms often causes strong
oscillations in electric field.

The following sections first review wind and wind divergence as
predictors of lightning strikes, then discuss how the electric field at
the ground varies with the approach of charged storm cells and
finally summarize our understanding of the connection between
lightning strikes and the prevailing synoptic weather regime.




2. Lightning Prediction Parameters

Lightning prediction will integrate data associated with local
storm cells and synoptic conditions. Local conditions include winds,
cell motion, precipitation shafts, cell cloud top altitudes and dynamics.
Synoptic conditions include weather regimes (generally vertical wind
profiles and associated stability indices), season and time of day. This
report discusses and combines selected weather elements into an
ANS predictor which is built on that of Frankel et al. 1989b.

2.1. Networks Using Wind Fields

Two types of ANS lightning predictors using wind data will be
considered. These are the current network using data from a single
prior time to predict the future, and a network conditioned by a data
product, namely divergence.

2.1.1. Current Network (1989)

The current KSC ANS predictor is an obvious place to begin
considering alternative network layouts. Prediction of lightning
strikes at KSC by Frankel et al. 1989b was made by a three - layer
backpropagation network such as is sketched in Figure 2-1. The
three layer architecture was chosen because it has been shown that
any continuous mapping can be approximated by a three layer
network Funahashi 1989. This network bases its predictions upon
data from one time epoch (time to) at its input level.

This choice was made for simplicity in this pilot study. Often,
time-series predictions are based on observations from more than one
prior epoch. Lapedes and Farber 1987 investigate the properties of a
generalized, nonlinear predictor based on a backpropagation ANS.
Werbos 1990 shows another approach to constructing an ANS
predictor based upon time series of data. This study commences this
type of study with the simplest predictor input, namely that using a
single time. What are the implications of a single time epoch ANS
predictor? Clearly the magnitude of whatever feature the current
network selects is used in making a prediction. The value of these
magnitudes is considerable as Watson et al. 1987 and Frankel et al.
1989 have already shown.
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Figure 2-1 106 x m x 64 backpropagation network of Frankel et al. 1989b used
in forecasting KSC lightning strikes from wind data. Two wind speed
component measurements at time tg are c¢:atered from the 53 wind sensors into
the input row to the left to make (tg, .., ti) predictions.

The temporal evolution or history of measurements is ignored
in this report. Time histories of weather measurements might be
incorporated either as a temporal series of measurements or in a
compressed form using temporal gradients of measurements.
Addition of the time evolution information should further improve
the predictions shown here at the expense of some complication in
network operation.

2.1.2. Total Area Divergence

Watson et al. 1987 calculated the divergence of the vector wind
field for sensors at one height above the ground at KSC. They then
determined a threshold value of the divergence which indicated a
high probability of a lightning event somewhere in the KSC area up to
two hours afterwards. Lightning events usually occurred 80-120
minutes after the threshold was exceeded. The approach of Frankel
et al. 1989b utilizes an ANS trained on raw wind fields and lightning
strikes at KSC to predict lightning within specific spatial 'tiles’ in KSC
for specific time intervals.

Wind divergence emerged as the best current parameter in
quantitative lightning forecasting, Lopez et al., 1986a and 1986b.
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During cell formation rising thermals condense to cloud. This rise
causes surface ('low level') winds to converge at the cloud base.
Conceptually one can draw a ring at the cloud base around the
periphery of which wind measurements are taken. By adding all the
wind currents perpendicular to this periphery the amount of air
‘converging’ at the cell is measured. For uniform winds equal
amounts of air are passing in one side of the circle and passing out the
other leading to a zero divergence. During convective cloud
formation, large negative divergences are observed.

A history of wind divergence is sketched in Figure 2-2 as
divergence magnitude vs. time. As the cloud collapses, the flow
reverses and a positive surface wind divergence appears. The
lightning strike prediction method of Watson et al. 1987 'declares’ a
lightning strike 'very probable’ when the wind divergence for all of
KSC drops below -1.5 x 10-4 sec-1 as shown in Figure 2-2. This
criterion was derived for the entire KSC area for a lightning strike in
the 'near future' (i.e. hours). In addition to a fixed divergence
threshold, the time evolution of divergence is significant.

Storm Cycle

i‘m§+4 Initial Maturity Dissipation
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=
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Expected

Figure 2-2 Typical Thunderstorm Divergence History

These results gave us confidence that raw wind data contained
information from which an ANS system could learn to make
lightning predictions. The neural network should learn the
correlation of lightning with divergence, at least, and might build
other significant correlations not present in divergence.
Furthermore, the neural network's performance might even surpass
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the Total Area Divergence predictor's if as input we used wind data
from all heights above the ground.

Frankel et al. 1989b built a neural network for strike prediction
using as predictor variables the wind field measured by all sensors at
KSC. They subdivide the time for a predicted strike into four future
time epochs (0-15, 15-30, 30-60 and 60-120 minutes), making the
prediction based upon conditions 'now' (at tg). Their ANS training
uses as dependent variables the lightning strikes observed by the
Lightning Location and Protection, Inc., (LLP) system in these same
time intervals.

The prediction results of Frankel et al. 1989b were of the same
quality as the results of Watson et al. 1987. Although the predictor of
Frankel et al. 1989b also uses the wind fields at KSC, there are major
differences in the inputs and in the way the two methods were
evaluated, as summarized in Table 4-1. Yet there is enough
similarity in these two methods for a direct comparison to be useful,
see Frankel et al. 1989b.

Table 4-1 Comparison of Two Lightning Predictor Methods

Aspect Frankel et al. 1989b Watson et al. 1987

Met Data Raw wind data; All Wind data product:
heights above the ground | divergence at one
included. height above ground.

Data Grid 53 sites distributed irregu-{ One divergence product
larly horizontally and for all of the KSC area
nonuniformly vertically | at one height.

Time Grid Uses data from only one | Uses reduced data from
prior time (to). only one prior time (tg).

Performance results from Frankel et al. 1989b show that wind
fields give useful, though certainly not perfect, predictions of
lightning strikes. Examination of the results suggests systematic
errors may be present that might be addressed by including electric
field data with wind data while using a longer time series (more
history).

22. Electric Field

Lightning is an electrical phenomenon and measurements of
local electric fields are directly related to the proximity of charged

7




clouds and the occurrence of strikes. The emphasis here is on short-
term prediction so that the electrostatic effects of the approach of a
charged cloud, as sketched in Figure 2-3, are of interest while the
electrostatic effects during lightning strikes are not considered.

IS — -0
Altitude Air Temperature
km degrees C
10 — — - 50
§ — L - 15
Converging .
Surface Winds Eé?:ltg:
™~
o 1 MM | s T

++ ++++++

Figure 2-3 Distribution of Thundercloud Charges, Williams 1988, with an
Overlay of the Converging Surface Winds which Feed the Upward Flow,
Frankel et al. 1989b.

The storm cell contains charged regions, see Figure 2-3, which,
as they move and change charge content, affect the vertical electric
(called the electric field hereafter) field at the ground. Because of
shielding by smaller, closer charged regions, the E field does not
necessarily reflect the presence of the largest charged regions. The
largest charged regions are the most likely to initiate strikes yet,
because of charge shielding, the measured electric field is not
necessarily directly related to incipient lightning strikes. This is
particularly evident in photographs of lightning strikes which loop
back on themselves. This type of behavior has led to the conclusion
that the turbulent distribution of charges, not the three-dimensional
electrical fields, largely determine lightning paths, Williams 1988.
Local electric fields may respond to storms 20 to 30 km distant and
sometimes 50 km away, Anon 1989b. The use of electric fields for
predictions is therefore somewhat questionable, and is likely to be
most useful for short-term predictions.
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Figure 2-4 Variations in electric field intensity as storm cell approaches the
measuring station, modified from Uman 1984. The storm is assumed to be
approaching at 20 km/h.

Nevertheless, general behavior patterns in the electrostatic
field, as measured by a field mill, are important for indicating the
near-term approach of a cloud. Uman 1984 gives the electric field
intensity at the ground resulting from three regions of charge as
sketched in Figure 2-3. Let us take the upper positive charge to be 40
coulombs at 10 km altitude, the middle negatively charged layer to be
-40 coulombs at 5 km altitude and the lower positive charge to be 0, 5
or 10 coulombs at 2 km altitude. All are assumed to be point charges.
Note that this is a highly idealized distribution of charge; actual
measurements sometimes show many layers of opposing charge,
Schuur et al. 1990.

The effect of cloud distance, D, from the observing site is shown
in Figure 2-4 which is taken from Uman 1984. Since the smallest
charge is also the lowest charge, its greatest effect is at very short
distances (or times). For short-term lightning prediction, from 15 to
30 minutes into the future, the roughly monotonic decrease in
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electric field intensity is an indication of the sizeable negative charge
layer dominating the mid-cloud region.

7/21/88
Five Minute Averaged Electric Field

— Mill# 4
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! 5 10 15 I 3 |~ Mill¥s

4000 +

-2000

Electri Field/(kV/m)

6000 +

8000 4

Figure 2-5 Measured electric field data for July 21, 1988. The time is expressed
as UT from midnight local time on one day to midnight of the next. These data
are courtesy of KSC.

'Field mills' are used to measure electric field intensity, Uman
1984, of which KSC data are used in this report, sce Figure 2-5. The
behavior above suggests the use of electric field measurements
averaged over the same intervals used for the surface wind field. The
electric field might be used as a 'conditioning’ node for each ANS
spatial 'tile’. This would require that there be an electric field mill in
each tile, which is not the case. An alternative used here is to simply
include all of the raw field mill data from the KSC area, averaged
over a five minute time matching the wind data averages. Electric
field intensities could be input as: magnitudes, spatial gradients,
temporal gradients or combinations of these three. In this report, the
magnitude of field intensity is used.

2.3. Synoptic Weather Influence

Several studies, conducted since 1983, have established
qualitative correlations between synoptic weather conditions and
subsequent lightning strike patterns in southern and central Florida.
The earliest demonstration of this relationship is in Lopez, Holle &
Balch 1983 which was followed by a look by Lopez & Holle 1987 at
conditions in central Florida. The conclusion reached by the authors
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of this work was that the synoptic weather regime early in the day
strongly influences subsequent lightning strike patterns.

2.3.1. Review of South Florida Synoptic Conditions

Lopez et al. 1983, showed that diurnal convective activity in
south Florida is determined, to a large extent, by the type of synoptic
flow pattern present during the day. It is reasonable to expect that
these flow regimes are reflected in lightning activity. The flow
regime is important since it determines the type of air mass (i.e., the
atmospheric thermodynamic properties) in which the convective
clouds are developing in response to the forcing produced by local sea
and lake breeze circulations. Different flow patterns can bring
dynamic influences in the form of enhanced forcing or suppression of
convection. In south Florida during the summer, the principal
synoptic flow regimes are determined by: (a) position of the Atlantic
High in relation to the peninsula; (b) passage of tropical storms, and;
(c) passage of mid-latitude perturbations.

Motivated by the need to have ‘advance knowledge of the
degree of lightning activity over a region in the next 12 to 24 hours'
Lopez et al. 1984 took advantage of strike collections from the then
recently deployed c-g lightning detectors together with digitized
radar reflections and early morning atmospheric soundings. The
lightning data were collected by two direction finders manufactured
by Lightning Location and Protection, Inc. This study aimed at
associating principal meteorological data (e.g., flow patterns) with
lightning activity, rather than the exact timing and diurnal
fluctuations of strikes. The principal meteorological data chosen are
'flow regimes’ typical of south Florida.

In order to describe the overall flow in the region it is convenient
to examine the entire wind direction profile. These are obtained in
the morning from vertical soundings and are assumed to
characterize the synoptic flow regime during the remainder of the
day. These wind profiles are shown in Figure 2-6.
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Figure 2-6 Typical wind profiles for South Florida from Lopez et al. 1984.

Wind direction profiles are given the following designations:

(1) Deep Easterlies: ESE winds predominate in a deep layer
from the surface to 450 mb with very little wind
directional shear. Above that level the winds gradually

turn to the NE.

(2) Low Level Southerlies: SSW winds present in the layer
from the surface to 650 mb. Beyond that level the winds

turn SE and finally NE above 300 mb.

(3) Mid Level Westerlies: SSW winds very close to the
surface changing to WSW/WNW in the 850-400 mb

layer. Above that level the winds turn into a northerly
direction, finally becoming NE as in all the other profiles.
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(4) Mid Level Northerlies: NNE winds in a layer from 700 to

500 mb, with sheared layers above and below. In the lower
part winds change from SW at the surface to NNE at 700
mb. In the upper layer the winds change from NNE to W,
S and NE above 200 mb.

Lopez et al. 1984 show that knowledge of that morning's
synoptic weather patterns gives indications of the activity patterns of
the ensuing lightning strike activity. Specifically, when the
soundings were averaged together by quartiles of lightning activity,
within wind profile types, characteristic differences were found that
gave a consistent picture of the factors determining different degrees
of lightning activity. Lopez et al. 1984 conclude that relationships
exist between daily flash activity and certain combinations of
meteorological parameters detected early in the morning before
significant convection develops.

This early study established that an important relationship
exists between the general weather pattern and subsequent lightning
strike patterns. Because of the possibility that 'south Florida' synoptic
conditions may be different from KSC (mid-Florida) conditions, it is
necessary to examine the case in central Florida.

2.32. Low-Level Wind Flow in Central Florida

Lopez & Holle 1987, investigated lightning cloud-to-ground
strike patterns in the context of the prevailing wind direction. This
approach was taken up based upon 25 years of study of the
association between shower activity and low-level atmospheric
activity.

In this study 24 hour diurnal lightning strikes (in the summers
of 1983, 1984 and 1985) were classified by mean wind direction in the
1000 and 700 mb layer using the 'early morning' (0900 - 1100 EST)
KSC sounding. Five classes defined four mutually exclusive 90°
sectors:

(1) 'calm' (< 2 m/s);
(2) NE wind (23° to 113°);
(3) SE wind (113° to 203°);

(4) SW wind (203° to 293°), and;
13




(56) NW wind (293° to 23°).

The NE and SW directions are perpendicular to the 'east’' and 'west'
coasts whilst the NW and SE directions are in the parallel sense. The
mean wind direction profiles are shown in the Figure 2-7.
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Figure 2-7 Mean wind direction profile for each wind direction group in the
1000 to 100 mb range. The wind direction between 1000 and 700 mb is used to
identify the mean wind regime in Central Florida, Lopez and Holle 1987.

In general, NE days are least favorable for deep convection,
being the most stable and driest. These days frequently reflect the
presence of an anticyclonic center north of the region, bringing air
that has had a history of subsidence over the region. SW days are
moist and most unstable and so would be the most favorable for deep
cumulus cloud development. These two groups differ the most from
each other while the other groups show an intermediate potential in
terms of combinations of moisture and instability. Maps over KSC of
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lightning flashes appear to be strongly influenced by the mean wind
direction.

The observational evidence indicates that synoptic wind flow
has a role in determining both the spatial and temporal flash
distribution in central Florida. This influence seems to occur mostly
through the interaction of the onshore/offshore low-level wind
components of the prevailing (synoptic) wind with the regional sea
breeze circulations. The prevailing flow has a role in determining the
overall degree of flash activity through the advection of different
types of air masses having stability and moisture contents that are
favorable for, or detrimental to, deep convection. Lopez & Holle 1987
suggest that early morning low-level wind conditions can aid in
forecasting the characteristics of lightning conditions during the day
over central Florida.
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3. Data Fusion & Time Series Prediction Networks

In this section we consider how additional data days, additional
prior times, the divergence product, and an additional weather
parameter, the electric field, might be included in the ANS inputs.
Also considered is the implementation of time histories in weather
forecasting.

3.1. Networks for Winds & E-Fields

The combination of new wind data days with other types of data
involves a form of 'ANS data fusion." ANS for different kinds of input
parameters have been developed and used successfully. For example,
the plankton analysis networks of Frankel et al. 1989a combine flow
cytometer optical data with sampling depth values to improve the
classification of plankton species.

3.1.1. Strategies Considered

The fusion of winds and electric fields could be made at one (or
more) of several levels. For the wind input, the full tower set, wind
time series with p 'conditioning' nodes (see Figure 3-1) is assumed.
For the electrical inputs, following the discussion of Section 2.2,
'Electric Field', a conceptually simple point to start modifying the
ANS predictor for electric field phenomena is to add a set of
conditioning nodes. Subsequently a separate array of electric field
nodes could be used in much the same way that the wind sensor
array is now input to the ANS, see Figure 2-1.

The electric field 'conditioning’ node would simply be added to
the other 'conditioning’ nodes already pictured in Figure 3-1. In the
lower part of that figure the "Electric Field" parameter would be
added. How this parameter is derived is important. At first, it would
be the average electric field for all KSC. Next the time and spatial
derivatives for that average could be added. Hence, this electric field
ANS looks just like that in Figure 3-1 using the chosen electric field
parameter for all KSC.

When adding information about the spatial description of the
KSC electric field, a new array of spatial inputs must be added as is
pictured in Figure 3-1.
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Figure 3-1 Electric Field added to the spatial array (16 nodes) and the
‘conditioning’ nodes (1 node) inputs for a {p + 16 + [106 x nl}]x m x 64
backpropagation network proposed for using electric/wind tower histories in
forecasting KSC lightning strikes.

There is now a range of ANS architectures to consider for winds
plus electric field. Current resources are limited, so the architectures
actually evaluated must be selected with care. As is often the case in
scientific studies, consideration must be given to the trade-off between
simplification and loss of information.

Here are two approaches. First, develop an electric field product
which can be entered at a single node. Second, use the full set of
electric field sensor data. That is the electric field/wind series
elaboration of the ANS might eventually include the following sets of
inputs being added to the Frankel et al. 1989b ANS:

17




(A) 'Conditioning’ Nodes Only (time of day, season, weather
regime, etc.)

(1) 1 average electric field for KSC,

(2) 1 average electric field time/spatial gradient for KSC,
(B) Spatial Nodes with above 'Conditioning’ Nodes

(1) 16 average electric fields for each tile at to,

(2) 16 average electric field gradients for each tile at to,

(3) 16xn average electric fields for each tile at tg to t;,

(4) 16xn average electric field gradients 16 tiles at tg to t,,

The electric fields and winds are measured (at KSC) at different
rates. Winds are measured every 5 minutes while the electric field
may be measured at rates up to 10 Hz. Therefore the user will have
to reconcile different rates in building an efficient ANS predictor.

3.1.2. Strategy Adopted

The electric field data fusion strategy adopted in this study uses
the data from each of the field mills as a separate input to the neural
network. Since this will be the first attempt to employ the electric
field data, it was preferable to retain all of the information at this
early stage of predictor development, rather than to reduce it to a
single conditioning input. Moreover, since there are only 31 electric
field sensors, computing an input for each of 16 tiles does not offer a
very great reduction in network complexity. The process begins with
averaging the data for each field mill over 5 minute intervals to
match the time intervals of the wind data. The averaging is done in a
separate computer program which creates the input file for the
network.

32. Synoptic Weather Networks

As in the 'depth’ conditioned ANS of Frankel et al. 1989a,
lightning predictions will be affected by overall influences such as the
time of day and the weather regime. The "Time of Day' (ToD) might
be used with the additional days of wind data to be used beyond the
single training day employed in Frankel et al. 1989b. This expanded
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training set should also be examined for the 'weather regime'
characterizing each lightning day.

The weather regime (discussed in Section 2.3) can also be used
to condition the network. The weather regime is the heading of the
overall weather mass moving through the KSC area. This
information could be derived from the sounding which is taken every
day at KSC. Stability indices can also be derived from the soundings
and used as conditioning inputs.
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Figure 3-2 Showing 'conditioning’ nodes (with p conditioning functions) on a
{p + [106xn]}xmx64 backpropagation network proposed for using wind tower
histories in forecasting KSC lightning strikes from wind data.

The node layout for one or more of p conditioning inputs is
sketched in Figure 3-2 as a direct input to the entire hidden node
layer.

3.3. Time Series Prediction
Our discussion of thunderstorms indicates that surface wind
fields undergo reasonably repeatable histories, Figure 3-2. One would

expect to improve the predictive power of this class of network if
more complete wind histories were included in the ANS input set.
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3.3.1. Multiple Time Series Network

A simple way to incorporate time histories is to add a series of
input layers corresponding to the 563 wind sensors for a series of
earlier epoches (tj, tg, ..., tn) than the single epoch now used (tp).
Adding other epoches in the wind tower series should be done in
parallel. That is, data for all 53 wind sensors should be read
simultaneously for the same prior time. This is the idea behind
representing each prior time as a complete and equal vertical column
in Figure 3-2. This appears to be a cumbersome approach.
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Figure 3-3 Temporal gradients used in a [106 x 2] x m x 64 backpropagation
network proposed for forecasting KSC lightning strikes from wind data.

One means of compressing the time history data required is to
use the temporal gradient of the wind magnitudes as sketched in
Figure 3-3. Other ANS time predictor approaches are those of
Werbos 1990 and Patil and Sharda 1989. The latter predict, from
standard time series, 1-12 months into the future using data from the
previous 12 - 18 months.
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4. Modified ANS Networks

All of the possible data processing, data fusion and time series
prediction strategies described above are worth pursuing. Only a few
of them could be investigated in the effort reported here. Those
chosen for this study are listed in the following Subsection.

4.1. Chosen Prediction Parameters and Strategies

We sought to enhance the predictive performance of the ANS
by several means:

(1) Additional Lightning Days - The use of additional days of
wind data. Frankel et al. 1989b used one day (25 July
1988). Up to seven additional days are available for use;

(2) Addition of a Data Product - The Total Area Divergence
has been shown to be of value for lightning prediction.
Inclusion of this product will demonstrate the ANS
system's ability to fuse disparate data and give a further
assessment of the usefulness of divergence as a predictive
parameter.

(3) Addition of Electric Field Data - Charged thunderstorm
clouds, which are the source of lightning strikes, are
detected by the changes in the Earth's electric field as they
approach a meteorological station. Electric field data will
be added to the wind data in an improved lightning
predictor. It might be expected that using the time
derivative of the electric field would improve its value for
prediction, since the electric field undergoes large positive
and negative oscillations during a storm, as shown in
Section 3.2. Inclusion of the electric field data will receive
less attention because of the difficulties of manipulating
these data and their more doubtful value for prediction.

4.2. Modified ANS Predictor Performance

This report describes three extensions to our earlier work
(Frankel et al., 1989b): (1) training the networks using more than
one day of lightning data, (2) use of wind Total Area Divergence
values as a 'context’ for KSC, and (3) use of averaged electric field mill
data.
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Prediction performance is measured in terms of the probability
of detection (PoD) and the probability of false alarm (PFA) as
described in Frankel et al. 1989b. As before, a prediction is counted as
correct only if lightning occurred in the predicted tile during the
predicted epoch. PoD is the ratio of the number of spatial tiles and
time epochs where the ANS system made a correct prediction of
lightning occurrence to the number of tiles and time epochs where
lightning occurred. PFA is the ratio of the number of tiles and time
epochs where the ANS predictor falsely predicted lightning to the
number of tiles and time epoches without lightning. These two
quantities form the axes of the "Receiver Operating Characteristic"
(ROC) graph, which is a standard means of evaluating predictive
systems (Green and Swets, 1966). Improved ANS predictor

performance was achieved, as measured by a higher PoD with a low
PFA.
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Figure 4-1 Probability of detection by time epoch of the ANS using two days of]
wind data as input. The horizontal line labeled WLHD is the level of]
performance of Watson et al. 1987 in predicting lightning for the entire KSC
area at any time following a threshold crossing of the Total Area Divergence.

In this study, networks having one "hidden" layer were used
exclusively. Networks with as many as 50 hidden nodes in this layer
were investigated. In general, networks with more hidden layer
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nodes achieve a lower total error at the end of training. However, the
large networks did not perform as well on days of data outside their
training set. This is to be expected; limiting the size of a network
reduces its ability to learn every detail of its training data and in effect
"forces" it to generalize.
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Figure 4-2 ROC graph of the ANS predictor using wind only as input. The
diagonal line terminates beyond the right hand border of the figure, at the
point where the probabilities of false alarm and detection are both unity. The
performance of systems using a guessing strategy would fall somewhere on
this line. Being in the upper left part of this graph, the points describing the
ANS predictors demonstrate that they are performing substantially better than
|guessing.

Results are shown in Figure 4-1 for networks trained with
wind data only and having 5, 6, 7, and 8 nodes in the hidden layer.
The probability of detection is greater for the 5, 6, and 7 layer
networks, with PoDs from 0.55 to 0.57. This maximum PoD occurs
at 1 hour (30-60 minutes) in the future. The horizontal line in the
figure marked WLHD shows the PoD obtained by Watson, et al.,
(1987) for predicting a lightning strike anywhere in the KSC area at
any time after the Total Area Divergence crosses a threshold.

The PoD does not tell the whole story. A PoD of unity could be
obtained by predicting lightning all of the time. On the other hand,
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the PFA for such a strategy would also be unity, whereas one would
like it to be small. These considerations are displayed in the ROC
curve in Figure 4-2. Often in such graphs, both axes extend from 0 to
1. In the ROC graphs of this report, the PFA axis has been expanded
to show more detail. The diagonal line represents the performance of
a system which is predicting by guessing with some probability. The
line extends to the point (1, 1), which is beyond the edges of the
expanded graph. The point (1, 1) represents a particular case of the
guessing strategy: always predict lightning. The symbols represent
the performance of the ANS predictor. Systems above the diagonal
line in the ROC graph are doing better than guessing.
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Figure 4-3 Probability of detection by time epoch of the ANS using two days of]
wind data and the Total Area Divergence as input. The horizontal line labeled
WLHD is the level of performance of Watson et al. 1987 in predicting lightning
for the entire KSC area at any time following a threshold crossing of the Total
Area Divergence.

Predictor performance is improved at 1 hour by including the
Total Area Divergence product as an input to the network. This is
shown by comparing Figures 4-1 and 4-3. In this case, the 7 hidden
node network performs best, with a PoD of 0.63. Performance also
improved noticeably for the 7 and 8 node networks at 2 hours, and for
all but the 6 node network at 1/2 hour.
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Figure 4-4 ROC graph of the ANS predictor using wind and Total Area
Divergence as input. The diagonal line terminates beyond the right hand
border of the figure, at the point where the probabilities of false alarm and
detection are both unity. The performance of systems using a guessing
strategy would fall somewhere on this line. Being in the upper left part of this
graph, the points describing the ANS predictors demonstrate that they are
performing substantially better than guessing.

The ROC graph for the predictors using wind and divergence is
shown in Figure 4-4. As in the case of the wind networks described in
Figure 4-2, predictor performance is substantially better than
guessing.

Figure 4-5 shows the probability of detection for networks using
wind, divergence and electric field as input. Network performance is
comparable to those of the other networks. There is, however, one
area of real improvement. As discussed in Section 5, the value of the
electric field data was expected to be an improvement of prediction
performsance in the early time epochs. In fact, one network performs
significantly better in near term prediction than networks without
electric field input, namely the ten node network. This result is
shown more clearly in Figure 4-6, where for each training data suite,
we plot the prediction performance of the network which performs
best in the most time epochs. While these results using electric field
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are preliminary, they do suggest that electric field data can
significantly improve near term prediction performance.
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Figure 4-5 Probability of detection of the ANS using two days of wind data, the
Total Area Divergence, and the electric field data as input. The horizontal line
labeled WLHD is the level of performance of Watson et al. 1987.

Prediction results achieved are, for the test days, superior to the
PoDs of the previous state-of-the-art reported by both Watson et al.
1987 and Frankel et al. 1989b. The improving trend in lightning
prediction over the last few years is shown in Figure 4-7. These
advances begin with the demonstration of Watson et al. 1987
(WLHD) of the prediction of subsequent lightning strikes for the
entire KSC area at any time after a Total Area Divergence threshold
crossing. Next Frankel et al. 1989 applied ANS learning and
subdivided the predictions into detailed 'time epochs' and 'spatial tiles.'
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Prediction Performance of the Network Which is Best in the

Most Epochs
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Figure 4-6. Prediction performance for a selected network for each of the
training data suites. "W", "W,D", and "W,D,E" designate training data suites
of wind field, wind field and divergence and wind field, divergence, and
electric field, respectively. Prediction improvements are evident at 1 and 2
hours due to divergence and at time Now due to electric field.

This work shows further improvement by use of more training
days, the combination of wind and convergence data and the addition
of electric field data. Even the modest extension of training sets to 2
days from 1 day shows marked improvement at 1 Hour.

Note that the criteria used by Watson et al. 1987 to declare a
correct prediction are much less stringent in both spatial and
temporal precision than those used in this study and our previous
study. Using neural networks and including more data and data
products as input has improved lightning prediction performance
substantially.
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Best Prediction Performance at 1 Hour as a Function of
Training Data Suite
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Figure 4-7 Trend of lightning prediction performance as a function of the data
used for training and prediction. "TAD" indicates the Total Area Divergence
product. The point labeled "WLHD" is the study of Watson et al. 1987, using
the TAD threshold crossing technique. Other points are from Frankel et al.
1989b and the present study.

Upon comparing both Figures 4-6 and 4-7 the ANS predictor
has performed well predicting lightning strikes for defined times in
the future, has systematically improved with additional wind data,
has improved as new types of data (convergence and field mill
values) are used, and indicates the epochs in which one type of data is
particularly useful (field mill data at short future times).
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5. Recommendations

A thunderstorm's progress over KSC affects locz’ weather
parameters: precipitation, cloud cover, winds and electric fields.
Watson et al. 1987 developed correlations between the present
surface wind divergence and lightning strikes over the next few
hours. Using ANS to process surface winds, Frankel et al. 1989b built
the first automatically trainable lightning predictor. Its performance
was comparable to that reported by Watson et al. for wind
divergence.

Several approaches are considered in this report for improving
the ANS lightning predictor. Those that were tried were largely
successful. Further improvement can be expected by developments
in the following areas:

(1) Additional Lightning Days for more representative training

The larger PoD values shown in Figure 7-7 are
believed to result from the use of larger, more
representative data sets for training the networks. In our
earlier study, one day of data was used for training. In this
study, the number of days of data was increased to two.
Better performance and more generalization is expected if
weeks, months and even years of data are used for
training.

(2) 'Conditioning' Input Nodes for synoptic weather conditions

'Context' input nodes can be used for introducing the
synoptic weather discussed by Lopez et al. 1987 in
connection with lightning activity over central Florida.

(3) Additional Lightning Past Times for time evolution

Frankel et al. 1989b used wind data at a single time, tg, in
the ANS predictor to forecast strikes at tg, t.12, t+1 and t,2.
Lapedes & Farber 1987 showed the value of an ANS for
generalized, non-linear predictions and for providing a
'mapping’ of the underlying systematic behavior of a
system. The use of a greater time series (e.g. to, t.y2, t.1, t.2,
&c.) of wind data should be considered.
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Another approach to using neural networks has recently
been described by Werbos (1990). This paper describes
"backpropagation through time" for describing learning
the behavior of dynamical systems. It would be interesting
to investigate the performance of that network
architecture for lightning prediction.

(4) Addition of E-Fields adds an independent predictive variable

Lightning strikes at distances of 50 km induce changes in
the Earth's electric field, Anon 1989b. Electric field data
were combined with wind data in the ANS lightning
predictor in the hope of obtaining improved performance,
particularly for nowcasting. These results are
preliminary; further investigation is warranted. Besides
more extensive training, preprocessing of the electric field
data might be very useful. For example, the time
derivative of the electric field might have better predictive
power than the field magnitude, or both together might be
best.

(5) Exploration of Prediction Thresholds for Risk-Benefit
Analysis

The ROC region used in this study is restricted to the
lower left hand side of the ROC curve shown
schematically in Figure 5-1. Other operating points on
the ROC curve can be obtained by changing the ANS
system's prediction threshold. The optimum point of
system operation should be chosen by a risk-benefit
analysis of lightning prediction. The small extent of the
ROC explored shows the need to vary the ANS system's
threshold so that the ROC may be better specified in
future work.

(6) Proper comparison to prior predictors.

Another interesting task would be the summation of the
ANS predictor detailed results (by epochs and tiles) to
make a direct comparison with the results of Holle et al.
1987. Moreover, a detailed analysis of the ANS prediction
performance (by epochs and tiles) would provide
important information on the predictor performance.
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This would be especially illuminating for the value of ANS
predictors designed with and without other
measurements (e.g. electric fields).

1.0

PoD

0.0
0.0 PFA 1.0

Figurz 5-1 Schematic ROC graph. Performance evaluations in this work lie in
the lower left-hand quadrant. The spread now observed in Figures 7-2 and 7-4

does not allow extrapolation of the ROC curve, which may resemble either a or
b.

In this report three approaches were carried out: (1) use of
additional lightning day data, (2) use of averaged wind divergence
values as a 'context' for KSC, and (3) use of time-averaged electric
field mill data for KSC. Improved ANS predictor performance,
measured by both higher PoD and low FAR, was attained.

The value of using additional training days has two implications
for ANS operational predictors. Further improvements can be
expected from large data sets covering two or three seasons of KSC
data. Second, once in operation (on site) a predictor's performance
will improve, by incremental learning, during the course of routine,
continuous data collection. This will help military meteorologists who
often have limited acquaintance with local weather conditions due to
their rotating tours of duty, Pickle 1990.
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